
Java certification success, Part 1: SCJP
Skill Level: Introductory

Pradeep Chopra
Cofounder
WHIZlabs Software

06 Nov 2003

This tutorial is designed to prepare programmers for the Sun Certified Java
Programmer (SCJP) 1.4 exam, providing a detailed overview of all the exam's main
objectives.

Section 1. Before you start

About this tutorial

This tutorial is a guide to help you become a Sun certified Java programmer. It is
organized in the same way as the Sun Certified Java Programmer (SCJP) 1.4 exam
and provides a detailed overview of all of the exam's main objectives. Throughout
the tutorial, simple examples are provided to illustrate the important concepts
covered in the exam.

At the end of each section, exercises are provided to test your knowledge of the
main concepts covered in that section. At the end of the tutorial, useful resources,
such as recommended books, articles, tutorials, training, and specifications for the
exam, are also listed.

If you are a programmer interested in enhancing your skills and your resume, this
tutorial is for you. The tutorial assumes you have familiarity with the Java
programming language.

About the SCJP 1.4 exam

The SCJP 1.4 exam is the first in a series of Java certification exams offered by Sun
Microsystems, and for many programmers it is the first step to becoming established

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 47

http://www.ibm.com/legal/copytrade.shtml

as a competent Java developer.

The exam tests the knowledge of Java fundamentals and requires in-depth
knowledge of the syntax and semantics of the language. Even experienced Java
programmers can benefit from preparing for the SCJP exam. You get to learn very
subtle and useful tips you might not have been aware of, even after many years of
Java programming.

Section 2. Declarations and access control

Arrays

Arrays are dynamically created objects in Java code. An array can hold a number of
variables of the same type. The variables can be primitives or object references; an
array can even contain other arrays.

Declaring array variables
When we declare an array variable, the code creates a variable that can hold the
reference to an array object. It does not create the array object or allocate space for
array elements. It is illegal to specify the size of an array during declaration. The
square brackets may appear as part of the type at the beginning of the declaration or
as part of the array identifier:

int[] i; // array of int
byte b[]; // array of byte
Object[] o, // array of Object
short s[][]; // array of arrays of short

Constructing arrays
You can use the new operator to construct an array. The size of the array and type
of elements it will hold have to be included. In the case of multidimensional arrays,
you may specify the size only for the first dimension:

int [] marks = new int[100];
String[][] s = new String[3][];

Initializing arrays
An array initializer is written as a comma-separated list of expressions, enclosed
within curly braces:

String s[] = { new String("apple"),new String("mango") };
int i[][] = { {1, 2}, {3,4} };

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 2 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

An array can also be initialized using a loop:

int i[] = new int[5];
for(int j = 0; j < i.length;j++)
{

i[j] = j;
}

Accessing array elements
Arrays are indexed beginning with 0 and ending with n-1, where n is the array size.
To get the array size, use the array instance variable called length. If you attempt
to access an index value outside the range 0 to n-1, an
ArrayIndexOutOfBoundsException is thrown.

Declaring classes, variables, and methods

Now let's look at ways we can modify classes, methods, and variables. There are
two kinds of modifiers -- access modifiers and non-access modifiers. The access
modifiers allow us to restrict access or provide more access to our code.

Class modifiers
The access modifiers available are public, private, and protected. However,
a top-level class can have only public and default access levels. If no access
modifier is specified, the class will have default access. Only classes within the
same package can see a class with default access. When a class is declared as
public, all the classes from other packages can access it.

Let's see the effect of some non-access modifiers on classes. The final keyword
(see Java keywords and identifiers for more on keywords) does not allow the class
to be extended. An abstract class cannot be instantiated, but can be extended by
subclasses:

public final class Apple {..}
class GreenApple extends Apple {} // Not allowed, compile time error

Method and variable modifiers
All the access modifiers can be used for members of a class. The private members
can only be accessed from inside the class. The protected members can only be
accessed by classes in the same package or subclasses of the class. The public
members can be accessed by any other class.

If there is no access modifier specified, these members will have default access and
only other classes in the same package can access them.

Now let's explore other modifiers that can be applied to member declarations. Some
of them can be applied only to methods while some can be applied only to variables,
as illustrated in the figure below:

Figure 1. Modifiers for methods and variables

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 47

http://www.ibm.com/legal/copytrade.shtml

A synchronized method can be accessed by only one thread at a time.
Transient variables cannot be serialized. An abstract method does not have an
implementation; it has to be implemented by the first concrete subclass of the
containing class. The class containing at least one abstract method has to be
declared as abstract. However, an abstract class need not have any
abstract methods in it:

public abstract class MyAbstractClass
{

public abstract void test();
}

The native modifier indicates that the method is not written in the Java language,
but in a native language. The strictfp keyword (see Java keywords and
identifiers for more information on keywords), which is used only for methods and
classes, forces floating points to adhere to IEE754 standard. A variable may be
declared volatile, in which case a thread must reconcile its working copy of the
field with the master copy every time it accesses the variable.

Static variables are shared by all instances of the class. Static methods and
variables can be used without having any instances of that class at all:

class StaticTest
{

static int i = 0;
static void getVar()
{

i++;
System.out.println(i);

}
}

class Test
{

public static void main(String args[])

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 4 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

{
StaticTest.getVar();

}
}

Constructors

A constructor is used when creating an object from a class. The constructor name
must match the name of the class and must not have a return type. They can be
overloaded, but they are not inherited by subclasses.

Invoking constructors
A constructor can be invoked only from other constructors. To invoke a constructor
in the same class, invoke the this() function with matching arguments. To invoke
a constructor in the superclass, invoke the super() function with matching
arguments. When a subclass object is created, all the superclass constructors are
invoked in the order starting from the top of the hierarchy.

Default constructors
The compiler creates the default constructor if you have not provided any other
constructor in the class. It does not take any arguments. The default constructor
calls the no-argument constructor of the superclass. It has the same access modifier
as the class.

However, the compiler will not provide the default constructor if you have written at
least one constructor in the class. For example, the following class has a constructor
with two arguments defined in it. Here the compiler will give an error if we try to
instantiate the class without passing any arguments because the default constructor
is not available:

class Dot
{

int x, y;
Dot(int x, int y)
{
this.x = x;
this.y = y;

}
}

If you invoke the default constructor of your class and the superclass does not have
a constructor without any arguments, your code will not compile. The reason is that
the subclass default constructor makes an implicit call to the no-argument
constructor of its superclass. For instance:

class Dot
{

int x, y;
Dot(int x, int y)
{
this.x = x;
this.y = y;

}

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 47

http://www.ibm.com/legal/copytrade.shtml

}

class MyDot extends Dot { }
class Test
{

public static void main(String args[])
{
MyDot dot=new MyDot();

}
}

Summary

In this section, we covered the important concepts that are included in the first
objective. We discussed the valid ways to declare and construct single and
multi-dimensional arrays. When you understand the effect of modifiers in methods
and classes, make sure you know the legal combinations of modifiers. For example,
you cannot declare a final method as abstract. We also learned about
constructors. Remember that the compiler provides the default no-argument
constructor only when you don't write any constructors.

Exercise

Question:

What will be the result of an attempt to compile and run the following program?

class Box
{

int b,w;
void Box(int b,int w)
{
this.b = b;
this.w = w;

}
}

public class MyBox extends Box
{

MyBox()
{
super(10,15);
System.out.println(b + "," + w);

}
static public void main(String args[])
{
MyBox box = new MyBox();

}
}

Choices:

• A. Does not compile; main method is not declared correctly

• B. Prints 10,15

• C. Prints 0,0

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 6 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• D. None of the above

Correct choice:

• D

Explanation:

The program does not compile because there is no matching constructor in the base
class for the super(10,15) call from the subclass constructor. void Box(int
b, int w) is not a constructor, because a return type is given. If it had been a
constructor, the variables w and h would have been initialized to 10 and 15. The
program would have compiled correctly and printed 10,15. There is no error in the
declaration of the main() method; static and public can appear in any order.

Section 3. Flow control, assertions, and exception
handling

Flow control statements

The flow control statements allow you to conditionally execute statements, to
repeatedly execute a block of statements, or to just change the sequential flow of
control.

if/else statement
The if/else statement is used for decision-making -- that is, it decides which
course of action needs to be taken. The syntax is:

if(boolean expression)
{

// do this if the expression is true
}
else
{

// do this if the expression is false
}

The else part in the if/else statement is optional. The curly braces are optional if
the body is limited to a single statement. (Note that we cannot use numeric values to
represent true and false as we do in C/C++.) For instance:

if (x == 5) {} // compiles, executes body if x is equal
to 5
if (x = 0) {} // does not compile, because expression

is non-boolean
if (x = true) {} // compiles, but the body is always

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 47

http://www.ibm.com/legal/copytrade.shtml

executed

In the case of nested if/else statements, each else clause belongs to the closest
preceding if statement that does not have an else.

switch statement
The switch statement is also used for decision-making, based on an integer
expression. The argument passed to the switch and case statements should be
int, short, char, or byte. The argument passed to the case statement should be
a literal or a final variable. If no case matches, the default statement (which is
optional) is executed.

When a break statement is encountered, the control moves out of the switch
statement. If no break statement is given, all the case statements are executed
until a break is encountered or the switch statement ends. For instance:

int x = 1;
switch(x)
{

case 1: System.out.println("one");
case 2: System.out.println("two");

}
// both one and two are printed

Notice the position of the default statement. Though the default statement is
usually placed at the end of all the case options, it is not mandatory as you can see
in the example below:

int i = 1;
switch(i)
{

default:
System.out.println("Default");
break;

case 0:
System.out.println("Zero");
break;

case 1:
System.out.println("One");
break;

}

Note that the control comes to the default statement only if none of the cases
match. However, it is a good practice to have the default statement at the end
itself.

Loop statements
The three types of Java looping constructs are while, do-while, and for.

while loop
The syntax of the while loop is:

while(boolean expression) {}

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 8 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The body of the while loop is executed only if the expression is true, so it may not
be executed even once:

while(false){} // body never executed

while(1) {} // code will not compile, not a boolean

do-while loop
The syntax of the do-while loop is:

do { } while(boolean expression);

The body of the do-while loop is executed at least once because the test
expression is evaluated only after executing the loop body. Also, don't forget the
ending semicolon after the while expression.

for loop
The syntax of the for loop is:

for(expr1; expr2; expr3)
{

// body
}

expr1 is for initialization, expr2 is the conditional test, and expr3 is the iteration
expression. Any of these three sections can be omitted and the syntax will still be
legal:

for(; ;) {} // an endless loop

There can be more than one initialization expression and more than one iteration
expression, but only one test expression.

break and continue
The break statement is used to exit from a loop or switch statement, while the
continue statement is used to skip just the current iteration and continue with the
next.

In the case of nested loops, the break statement exits from the innermost loop only.
If a break keyword (see Java keywords and identifiers for more information on
keywords) is combined with a label, a break statement will exit out of the labeled
loop:

outer: for (int i = 0; i < 10; i++)
{
while(y > 0)
{

break outer;
}

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 47

http://www.ibm.com/legal/copytrade.shtml

}
// breaks from the for loop if y > 0

Assertions

An assertion is a statement containing a boolean expression that is assumed to be
true when the statement is executed. The system reports an AssertionError if
the expression evaluates to false. It is used for debugging purposes:

assert(a > 0); // throws an AssertionError if a <= 0

Assertions can be in two forms:

assert Expression1 ;
assert Expression1 : Expression2 ;

Expression1 should always result in a boolean value.

Expression2 can be anything that results in a value. The value is used to generate
a String message that displays more debugging information. For instance:

class AssertionTest
{

int a ;
public void func()
{
assert (a < 0): "a is positive" ;
// Remaining code

}
}

In the above code, the assertion expression is true if a is negative. If a is positive, an
AssertionError is thrown with the message "a is positive."

Assertions are disabled by default. To compile with assertions enabled, you need to
use the source 1.4 flag:

javac -source 1.4 Test.java

To enable assertions at runtime, use the -enableassertions or -ea flags.

For selective disabling of assertions at runtime, use the -da or
-disableassertions flags.

For enabling assertions in the system classes, use the -esa or -dsa flags.
Assertions can also be enabled or disabled on a package basis.

Appropriate and inappropriate use of assertions

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 10 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

You can place an assertion at any location that you don't expect to be reached
normally. Assertions can be used to validate the parameters passed to a private
method. However, assertions should not be used to validate parameters passed to
public methods because a public method must check its arguments regardless of
whether assertions are enabled or not. However, you can test postconditions with
assertions in both public and non-public methods. Also, assertions should not
change the state of a program in any manner.

See Resources for more information on assertions.

Exception handling

Exceptions are Java objects; exception classes are derived from
java.lang.Throwable.

An exception is thrown to denote an abnormal occurrence like accessing an array
index that exceeds the size of the array. Exceptions can be checked or unchecked.
Subclasses of RuntimeException and Error are called unchecked exceptions.
All other classes, which inherit from Exception, are checked exceptions. Any
method that might throw a checked exception must either declare the exception
using the throws keyword (see Java keywords and identifiers for more information
on keywords) or handle the exception using a try/catch block.

try / catch block
The code that might throw an exception is enclosed in the try block. One or more
catch clauses can be provided to handle different exception types:

try
{

// code that might throw exceptions
}
catch(Exception e)
{

//code to handle the exception
}

The more specific exception type should be caught first. For instance, we have to
order the catch blocks from specific to most general, otherwise a compile-time error
occurs.

For example, assume that MyException inherits from Exception:

try
{

throw new MyException();
}
catch(Exception e)
{

System.out.println("Exception");
}
catch(MyException e)
{

System.out.println("MyException");

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 47

http://www.ibm.com/legal/copytrade.shtml

}

Here the compiler complains that the catch clause for MyException is
unreachable because all exceptions thrown will be caught by the first general catch
clause.

finally block
The finally block can also be provided to perform any cleanup operation. If an
exception is thrown, any matching catch clauses are executed, then control comes
to the finally block, if one is provided. The syntax of the finally block is as
follows:

try
{

// code that throws exceptions
}
catch(Exception e)
{

// handle exception
}
finally
{

// cleanup code
}

The finally block is executed even if no exception is thrown. The only case in
which this does not happen is when System.exit() is invoked by the try or
catch blocks. A try block should have either a catch block or a finally block,
but it's not required to have both.

Declaring and throwing exceptions
To throw an exception explicitly from the code, use the throw keyword.

The checked exceptions that a method can throw must be declared using the
throws keyword (see Java keywords and identifiers for more information on
keywords). For instance:

void f() throws MyException
{

if(x > y) throw new MyException(); // MyException is a subclass of Exception
}

Summary

In this section, we saw the proper usage of flow control statements like if/else
and while loops. Make sure that the arguments passed to these statements are
legal. Note the difference between break and continue statements. We discussed
assertions and the ways to disable and enable them. Be clear about when
assertions should be used and when using them is inappropriate. We also learned
about checked/unchecked exceptions and how to handle or raise exceptions in the
code. Remember that the finally block would be reached in most occasions

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 12 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

except in some special cases.

Exercise

Question:

What will be printed out if you attempt to compile and run the following code?

int i = 3;
switch (i)
{

default:
System.out.println("default");

case 0:
System.out.println("zero");

case 1:
System.out.println("one");
break;

case 2:
System.out.println("two");

}

Choices:

• A. default

• B. default, zero, one

• C. Compiler error

• D. No output displayed

Correct choice:

• B

Explanation:

Although it is normally placed last, the default statement does not have to be
placed as the last option in the case block. Since there is no case label found
matching the expression, the default label is executed and the code continues to fall
through until it encounters a break statement.

Section 4. Garbage collection

Behavior of the garbage collector

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 47

http://www.ibm.com/legal/copytrade.shtml

A Java programmer does not have to worry about memory management, because it
is automatically taken care of by the garbage collector. The Java virtual machine
(JVM) decides when to run the garbage collector. The garbage collector is a low
priority thread that runs periodically, releasing memory used by objects that are not
needed anymore.

The garbage collection (GC) algorithm varies from one JVM to another. There are
different algorithms being used, like reference counting or the mark and sweep
algorithm. See Resources for more information on garbage collection.

Running the garbage collector
The JVM usually runs the garbage collector when the level of available memory is
low. However, the garbage collector cannot ensure that there will always be enough
memory.

If there is not enough memory even after the garbage collector reclaims memory, the
JVM throws an OutOfMemoryError exception. Note that the JVM will definitely run
the garbage collector at least once before throwing this exception.

While you can request that the garbage collector run, it is important to note that you
can never force this action.

Requesting that the garbage collector run
To request garbage collection, you can call either of the following methods:

System.gc()
Runtime.getRuntime().gc()

Eligibility for garbage collection

An object is eligible for garbage collection when no live thread can access it.

An object can become eligible for garbage collection in different ways:

• If the reference variable that refers to the object is set to null, the object
becomes eligible for garbage collection, provided that no other reference
is referring to it.

• If the reference variable that refers to the object is made to refer to some
other object, the object becomes eligible for garbage collection, provided
that no other reference is referring to it.

• Objects created locally in a method are eligible for garbage collection
when the method returns, unless they are exported out of the method
(that is, returned or thrown as an exception).

• Objects that refer to each other can still be eligible for garbage collection
if no live thread can access either of them.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 14 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Consider the following example:

public class TestGC
{

public static void main(String [] args)
{
Object o1 = new Integer(3); // Line 1
Object o2 = new String("Tutorial"); // Line 2
o1 = o2; // Line 3
o2 = null; // Line 4
// Rest of the code here

}
}

In this example, the Integer object initially referred to by the reference o1
becomes eligible for garbage collection after line 3. This is because o1 now refers to
the String object. Even though o2 is now made to refer to null, the String object
is not eligible for garbage collection because o1 refers to it.

Finalization

Java technology allows you to use the finalize() method to do the necessary
cleanup before the garbage collector removes the object from memory. This method
is called by the garbage collector on an object when garbage collection determines
that there are no more references to the object. It is defined in the Object class,
thus it is inherited by all classes. A subclass overrides the finalize() method to
dispose of system resources or to perform other cleanup:

protected void finalize() throws Throwable

If an uncaught exception is thrown by the finalize() method, the exception is
ignored and finalization of that object terminates.

The finalize() method will be invoked only once in the lifetime of an object.

You can use an object's finalize() method to make it ineligible for garbage
collection. Note, however, that the garbage collector will not run finalize() for
this object again.

The finalize() method will always be invoked once before the object is garbage
collected. However, the finalize() method might never be invoked for an object
in its lifetime, because there is no guarantee that it will get garbage collected.

Summary

In this section, we discussed the concept of garbage collection, which is the Java
language's memory management technique. We saw that garbage collection cannot
be forced. We also learned the different ways in which objects become eligible for
garbage collection and that the finalize() method is invoked on an object before

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 47

http://www.ibm.com/legal/copytrade.shtml

it is removed by the garbage collector.

Exercise

Question:

How many objects will be eligible for garbage collection after line 7?

public class TutorialGC
{

public static void main(String [] args)
{
Object a = new Integer(100); // Line1
Object b = new Long(100); // Line2
Object c = new String("100"); // Line3
a = null; // Line4
a = c; // Line5
c = b; // Line6
b = a; // Line7
// Rest of the code here

}
}

Choices:

• A. 0

• B. 1

• C. 2

• D. 3

• E. Code does not compile

Correct choice:

• B

Explanation:

Among the three objects created in lines 1, 2, and 3, only the Integer object is
eligible for garbage collection at the end of line 7. The reference variable a, which
originally referred to the Integer object is made to refer to the String object in
line 5. So the Integer object is eligible for garbage collection after line 5, since
there are no variables referring to it. The variables b and c refer to the String and
Long objects in lines 6 and 7, so they are not eligible for garbage collection.

Section 5. Language fundamentals

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 16 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Package and class declarations

A package represents a group of classes. A package statement should be the first
valid statement in the source file. If there is no package statement, the classes in
the source file belong to the default unnamed package, or else they belong to the
named package. Only one package statement is allowed in a source file.

In a source file, there can be only one public class, and the name of the file should
match that of the class. An import statement allows you to use a class directly
instead of referring to it using its fully qualified name. Import statements must
come after any package statement and before the class declarations, as shown
below:

package com.abc; // package statement
import java.net.*; // wild card import (imports all

classes in the package)
import java.util.Vector; // class import (only the given

class is imported)

Nested class declarations
A nested class or inner class is a class defined inside another class. Nested classes
can be non-static, method-local, anonymous, or static.

Non-static inner classes
A non-static inner class definition does not use the static keyword (see Java
keywords and identifiers for more information on keywords). It is defined within the
scope of the enclosing class, as follows:

class MyClass
{

class MyInner{}
}

To instantiate a non-static inner class, you need an instance of the outer class.

A non-static inner class has access to all the members of the outer class. From
inside the outer instance code, use the inner class name alone to instantiate it:

MyInner myInner = new MyInner();

From outside the outer instance code, the inner class name must be included in the
outer instance:

MyClass myClass = new MyClass();
MyClass.MyInner inner = myClass.new MyInner();

Modifiers that can be applied to non-static inner classes are final, abstract,

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 47

http://www.ibm.com/legal/copytrade.shtml

public, private, and protected.

Method local inner classes
A method local inner class can be instantiated in the method where it is defined. It
can also be in a constructor, a local block, a static initializer, or an instance initializer.
It cannot access the local variables of the enclosing method unless they are final.
The only modifiers for such a class are abstract or final.

Anonymous inner classes
Anonymous inner classes are inner classes that have no name. They can extend a
class or implement an interface. For instance:

button1.addMouseListener(new MouseAdapter()
{

public void mouseClicked(MouseEvent e)
{
button1_mouseClicked(e);

}
});

This example shows an anonymous inner class. It is important to note that the class
has been defined within a method argument.

Static nested classes
A static nested class is a static member of the enclosing class. It does not have
access to the instance variables and methods of the class. For instance:

class MyOuter
{

static class MyNested{}
}
class Test
{

public static void main(String args[]){
MyOuter.MyNested n = new MyOuter.MyNested();
}

}

As this example shows, a static nested class does not need an instance of the outer
class for instantiation.

Interfaces

An interface is like a public class that has only abstract and public methods. The
variables declared in an interface are implicitly public, static, and final. For
instance:

interface MyInterface
{

void f();
}
class MyClass implements MyInterface
{

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 18 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

public void f() {}
}

A concrete class implementing an interface has to implement all the methods
declared in it.

Interface methods are implicitly public and cannot be declared static. All the
overriding rules are applicable for the implemented methods. A class can implement
more than one interface. An interface can extend any number of interfaces:

main() method

To run the class as a Java application, there must be a method called main that
takes an array of String objects as arguments. The main() method must be
public and static and should not return anything. Note that the modifiers
static and public can be in any order:

static public void main(String[] abc) {} // Valid

Command-line arguments
The String array argument of the main() method contains the command line
arguments. The length of the array will be equal to the number of command line
arguments. If you try to access elements outside the range 0 to length-1, an
ArrayIndexOutOfBoundsException is thrown. For instance:

class Test
{

public static void main(String args[])
{
System.out.println(args[0]);

}
}

When you use the java Test Hello command to invoke this code, the output is
"Hello."

Java keywords and identifiers

Keywords are reserved words that are predefined in the language; see the table
below. All the keywords are in lowercase.

abstract boolean break byte case catch

char class const continue default do

double else extends final finally float

for goto if implements import instanceof

int interface long native new package

private protected public return short static

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 47

http://www.ibm.com/legal/copytrade.shtml

strictfp super switch synchronized this throw

throws transient try void volatile while

Note: assert is a new keyword since J2SE 1.4

An identifier is composed of a sequence of characters where each character can be
a letter, a digit, an underscore, or a dollar sign.

An identifier declared by the programmer cannot be a Java keyword and it cannot
start with a digit. For instance:

number, $$abc, _xyx // Legal Identifiers
12cc, ss-he // Illegal identifiers

Ranges of primitive types
The size and range of all primitive types are listed in the table below. The positive
range is one less than the negative range because zero is stored as a positive
number. For the boolean datatype, there is no range; it can only be true or false.

Primitive Type Size Range of Values

byte 8 bits -2 7 to 2 7 -1

short 16 bits -2 15 to 2 15 -1

int 32 bits -2 31 to 2 31 -1

long 64 bits -2 63 to 2 63 -1

char 16 bits 0 to 2 16 -1

float 32 bits

double 64 bits

Literals

Integer literals can be decimal, octal, or hexadecimal.

Octal literals begin with zero and only digits 0 through 7 are allowed. For instance:

011

Hexadecimal literals begin with 0x or oX, the digits allowed are 0 through 9 and a
through f (or A through F). For instance:

0x0001;

All integer literals are of type int by default. To define them as long, we can place a
suffix of L or l after the number.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 20 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

For char literals, a single character is enclosed in single quotes. You can also use
the prefix \u followed by four hexadecimal digits representing the 16-bit Unicode
character:

'\u004E', 'A', 'a'

For float literals, we need to attach the suffix F or f. For instance:

float f = 23.6F;
double d = 23.6;

In the case of double literals, we can add D or d to the end, however this is optional.

Uninitialized variables
Static and instance variables of a class are initialized with default values for the
particular datatype. Local variables are never given a default value; they have to be
explicitly initialized before use. When an array is created, all its elements are
initialized to their default values, even if the array is declared locally.

Summary

In this section, we saw the correct way to declare packages, classes, interfaces, and
the main() method. We have also seen the effect of using variables without
initializing them. Make sure you can identify the keywords in Java code. Be clear
about the ranges of primitive types and how to use literals.

Exercise

Question:

What will be the result of compiling and running the following program with the
command java Test hello?

public class Test
{

static int i;
static public void main(String[] args)
{
do
{

System.out.println(args[++i]);
} while (i < args.length);

}
}

Choices:

• A. Prints "hello"

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 47

http://www.ibm.com/legal/copytrade.shtml

• B. Prints "Test"

• C. Code does not compile

• D. Throws an ArrayIndexOutOfBoundsException

Correct choice:

• D

Explanation:

The variable i is automatically initialized to 0. Inside the loop, i is incremented by 1
first before printing the value of args[i]. Here the args array has only one
element -- "hello." Attempting to access the second element causes the exception.

Section 6. Operators and assignments

Using operators

Assignment operators
You can assign a primitive variable using a literal or the result of an expression. The
result of an expression involving integers (int, short, and byte) is always at
least of type int. Narrowing conversions are not allowed, as they would result in the
loss of precision. For instance:

byte b = 5;
byte c = 4;
byte d = b + c; // does not compile because int

cannot fit in a byte

float f = (float)35.67; // implicitly double, so casting to
float
float f = 35.67F;

A boolean cannot be assigned any type other than boolean.

If we assign an existing object reference to a reference variable, both reference
variables refer to the same object. It is legal to assign a child object to a parent
object, but the reverse is not allowed. You can also assign an object reference to an
interface reference variable, if the object implements that interface. For instance:

class Base{}
public class Child extends Base
{

public static void main(String argv[])
{

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 22 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Child child = new Child();
Base base = new Base();
base = child; // Compiles fine
child = base; // Will not compile

}
}

instanceof operator
The instanceof operator is used to check if an object reference belongs to a
certain type or not. The type can either be an interface or a superclass. For instance:

class A{}
class B extends A
{

public static void main(String args[])
{
B b = new B();
if(b instanceof A)
System.out.println("b is of type A"); // "b is of type A" is printed

}
}

Note that an object is of a particular interface type if any of its superclasses
implement that interface.

The plus (+) operator
The plus (+) operator is typically used to add two numbers together. If the operands
are String objects, the plus (+) operator is overridden to offer concatenation. For
instance:

String s1 = "hello ";
String s2 = "World ";
System.out.println(s1 + s2); // prints "hello world"

If one of the operands is a String and the other is not, the Java code tries to
convert the other operand to a String representation. If the operand is an object
reference, then the conversion is performed by invoking its toString() method:

int i = 10;
String s1 = " rivers";
String s2 = i + s1;
System.out.printlns(s2); // prints "10 rivers"

Increment and decrement operators
Two shortcut arithmetic operators are ++, which increments its operand by 1, and
--, which decrements its operand by 1.

• ++ increment operator (increments value by 1)

• -- decrement operator (decrements value by 1)

These operators can appear before the operand (prefix) or after the operand
(postfix). In the case of the prefix style, the value of the operand is evaluated after

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 47

http://www.ibm.com/legal/copytrade.shtml

the increment/decrement operation. For postfix, the value of the operand is
evaluated before the increment/decrement operation, as shown below:

Prefix (operator is placed before the operand):

int i = 10;
int j = ++i; // j and i are 11
System.out.println(--i); // prints 10

Postfix (operator is placed after the operand):

int i = 10;
int j = i++; // j is 10, i becomes 11
System.out.println(i--); // prints 11

Shift operators
Shift operators shift the bits of a number to the right or left, thus producing a new
number:

• >> right shift (fills the left bit with whatever value the original sign bit held)

• << left shift (fills the right bit with zeros)

• >>> unsigned right shift (fills the left bits with zeros)

For instance:

8 >> 1;
Before shifting: 0000 0000 0000 0000 0000 0000 0000 1000
After shifting: 0000 0000 0000 0000 0000 0000 0000 0100

Note that decimal equivalent of the shifted bit pattern is 4.

Bitwise operators
Java provides four operators to perform bitwise functions on their operands:

• The & operator sets a bit to 1 if both operand's bits are 1.

• The ^ operator sets a bit to 1 if only one operand's bit is 1.

• The | operator sets a bit to 1 if at least one operand's bit is 1.

• The ~ operator reverses the value of every bit in the operand.

For instance:

class Test
{

public static void main(String args[])
{
int x = 10 & 9; // 1010 and 1001
System.out.println(x);

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 24 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

} // prints 8, which is the decimal equivalent of 1000
}

The bitwise operators & and | can be used in boolean expressions also.

Logical operators
The four logical operators are &, &&, |, and ||.

If both operands are true, then the & and && operators return true.

If at least one operand is true, then the | and || operators return true.

The & and | operators always evaluate both operands. && and || are called short
circuit operators because if the result of the boolean expression can be determined
from the left operand, the right operand is not evaluated. For instance:

if ((++x > 2) || (++y > 2)) { x++; }
// y is incremented only if (++x > 2) is false

Note that || and && can be used only in logical expressions.

The equals() method

We can use the == operator to compare the values of primitive variables and
determine if they are equal. However, if object reference variables are compared
using the == operator, it returns true only if the reference variables are referring to
the same object. To check for the equality of two objects, the Object class provides
the equals(Object obj) method, which can be overridden to return true for
logically equal objects. The default implementation of the equals() method in the
Object class returns true only if an object is compared to itself -- that is, it
behaves similarly to the == operator. Classes like String and Boolean have
overridden the equals() method, while StringBuffer has not. For instance:

String s1 = "abc";
String s2 = new String("abc");
if (s1 == s2) // returns false

System.out.println("Same Object Reference");
if (s1.equals(s2)) // returns true

System.out.println("Equal Objects"); // prints "Equal Objects"

Passing variables into methods

If the variable passed is a primitive, only a copy of the variable is actually passed to
the method. So modifying the variable within the method has no effect on the actual
variable.

When you pass an object variable into a method, a copy of the reference variable is
actually passed. In this case, both variables refer to the same object. If the object is

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 47

http://www.ibm.com/legal/copytrade.shtml

modified inside the method, the change is visible in the original variable also.
Though the called method can change the object referred by the variable passed, it
cannot change the actual variable in the calling method. In other words, you cannot
reassign the original reference variable to some other value. For instance:

class MyClass
{

int a = 3;
void setNum(int a)
{
this.a = a;

}
int getNum()
{
return a;

}
}
class Test
{

static void change(MyClass x)
{
x.setNum(9);

}
public static void main(String args[])
{
MyClass my = new MyClass();
change(my);
System.out.println(my.getNum()); // Prints 9

}
}

In the above example, you can see that changing the object referred to by x changes
the same object referred to by my.

Summary

In this section, we discussed the various operators and assignment rules. You
should understand the difference between bitwise operators (& and |) and logical
operators (& & and ||). Be clear about how equality is tested with the == operator
and the significance of the equals() method for the objects. Also, remember that
objects are passed by a copy of the reference value, while primitives are passed by
a copy of the primitive's value.

Exercise

Question:

What will be the result of compiling and running the following code fragment?

Integer i= new Integer("10");
if (i.toString() == i.toString())

System.out.println("Equal");
else

System.out.println("Not Equal");

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 26 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Choices:

• A. Compiler error

• B. Prints "Equal"

• C. Prints "Not Equal"

• D. None of the above

Correct choice:

• C

Explanation:

The toString() method returns the String equivalent of this String object. It
creates a new object each time it is called. The == operator compares the bit
patterns of the two object references and not the actual String contents. Thus the
comparison returns false, the else statement is executed, and "Not Equal" is
printed out.

Section 7. Overriding, overloading, and object orientation

Encapsulation

Encapsulation is the concept of hiding the implementation details of a class and
allowing access to the class through a public interface. For this, we need to declare
the instance variables of the class as private or protected. The client code should
access only the public methods rather than accessing the data directly. Also, the
methods should follow the Java Bean's naming convention of set and get.

Encapsulation makes it easy to maintain and modify code. The client code is not
affected when the internal implementation of the code changes as long as the public
method signatures are unchanged. For instance:

public class Employee
{

private float salary;
public float getSalary()
{
return salary;

}
public void setSalary(float salary)
{
this.salary = salary;

}

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 47

http://www.ibm.com/legal/copytrade.shtml

IS-A relationship
The IS-A relationship is based on inheritance. In Java programming, it is
implemented using the keyword extends. For instance:

public class Animal {...}
public class Cat extends Animal
{

// Code specific to a Cat. Animal's common code is
inherited
}

Here Cat extends Animal means that Cat inherits from Animal, or Cat is a
type of Animal. So Cat is said to have an IS-A relationship with Animal.

HAS-A relationship
If an instance of class A has a reference to an instance of class B, we say that class
A HAS-A B. For instance:

class Car
{

private Engine e;
}
class Engine {}

Here the Car class can make use of the functionality of the Engine class, without
having the Engine class's specific methods in it. This gives us a chance to reuse
the Engine class in multiple applications. Thus the HAS-A relationship allows us to
have specialized classes for specific functions.

Polymorphism

Polymorphism means "any forms." In object-oriented programming, it refers to the
capability of objects to react differently to the same method. Polymorphism can be
implemented in the Java language in the form of multiple methods having the same
name. Java code uses a late-binding technique to support polymorphism; the
method to be invoked is decided at runtime.

Overloaded methods are methods that have the same name, but different argument
lists. Overriding, on the other hand, occurs when a subclass method has the same
name, same return type, and same argument list as the superclass method.

Overloading
As we mentioned, it is mandatory for overloaded methods to have the same names
but different argument lists. The arguments may differ in type or number, or both.
However, the return types of overloaded methods can be the same or different. They
may have different access modifiers and may throw different checked exceptions.

Consider a print() method used to output data. The data might be int, boolean,
or char. For each type of data, the print() method should be implemented
differently. We can use overloaded methods as shown here:

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 28 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

void print(int i) {}
void print(boolean b) {}
void print(char c) {}

The method invoked depends on the type of argument passed. A subclass can
overload the methods, which it inherits from its superclass. Constructors can be
overloaded, which allows us to instantiate a class with different types of arguments.
In the following example, the subclass constructor invokes the overloaded
constructor of the superclass, which takes an integer argument:

class Base
{

Base() {}
Base(int a)
{
System.out.println(a);

} //Overloaded constructors
}

class Derived
{

Derived(int a, int b){ super(a); }
}

Overriding
A subclass can redefine a method that it inherits from its superclass. Now the
method actually called depends on the type of the invoking object at runtime. The
overriding method must have the same name, arguments, and return type as the
overridden method.

The overriding method cannot be less public than the overridden method. The
overriding method should not throw new or broader checked exceptions that are not
declared by the original method. In the following example, the overridden version of
the print() method is invoked because the invoking object is an instance of the
derived class:

class Base
{

void print()
{
System.out.println("Base");

}
}
class Derived extends Base
{

void print()
{
System.out.println("Derived");

}
public static void main(String args[])
{
Base obj = new Derived();
obj.print(); // "Derived" is printed

}
}

To invoke the superclass version of an overridden method from the subclass, use
super.methodName(). In the above example, the subclass can use the

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 29 of 47

http://www.ibm.com/legal/copytrade.shtml

functionality of the superclass print() method by calling super.print().

Methods declared as final cannot be overridden by subclasses. Even though
constructors can be overloaded, they cannot be overridden because they are not
inherited.

Summary

In this section, we discussed the advantages of encapsulation. You saw that
inheritance relationships are also known by the term "IS-A" relationships. A "HAS-A"
relationship indicates that one class holds a reference to another. You should be
able to identify the type of relationship from a given scenario. Be clear about the
distinction between overriding and overloading.

Exercise

Question:

Which of the choices below can legally be inserted at the "insert code here" position
in the following code?

class Parent
{

public void print(int i)
{
}

}
public class Child extends Parent
{

public static void main(String argv[])
{
}
// insert code here

}

Choices:

• A. public void print(int i, byte b) throws Exception {}

• B. public void print(int i, long i) throws Exception {}

• C. public void print(long i) {}

• D. public void print(int i) throws Exception {}

• E. public int print(int i)

Correct choices:

• A, B, and C

Explanation:

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 30 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Option D will not compile because it attempts to throw a checked exception that is
not declared in the Parent class. Option E will not compile because only the return
type is different; the argument list and method name are the same. This is not
allowed in both overriding and overloading. Options A, B, and C have different
argument lists, so they represent overloading, not overriding. Because they can
throw any exceptions, they are legal.

Section 8. Threads

Creating threads

Threads are objects in the Java language. A thread can be defined by extending the
java.lang.Thread class or by implementing the java.lang.Runnable interface.
The run() method should be overridden and should have the code that will be
executed by the new thread. This method must be public with a void return type
and should not take any arguments. See Resources for more information on
threads.

Extending thread
If we need to inherit the behavior of the Thread class, we can have a subclass of it.
In this case, the disadvantage is that you cannot extend any other class. For
instance:

class MyThread extends Thread
{

public void run()
{
System.out.println("Inside run()");

}
}

Now the Thread object can be instantiated and started. Even though the execution
method of your thread is called run, you do not call this method directly. Instead,
you call the start() method of the thread class. When the start() method is
called, the thread moves from the new state to the runnable state. When the Thread
Scheduler gives the thread a chance to execute, the run() method will be invoked.
If the run() method is called directly, the code in it is executed by the current
thread and not by the new thread. For instance:

MyThread mt = new MyThread();
mt.start();

Implementing Runnable
To implement Runnable, you need to define only the run() method:

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 31 of 47

http://www.ibm.com/legal/copytrade.shtml

class MyRunnable implements Runnable
{

public void run()
{
System.out.println("Inside run()");

}
}

Next, create an instance of the class and construct a thread, passing the instance of
the class as an argument to the constructor:

MyRunnable mc = new MyRunnable();
Thread t = new Thread(mc);

To start the thread, use the start() method as shown here:

t.start();

Thread constructors

The Thread constructors available are:

• Thread()

• Thread(String name)

• Thread(Runnable runnable)

• Thread(Runnable runnable, String name)

• Thread(ThreadGroup g, Runnable runnable)

• Thread(ThreadGroup g, Runnable runnable, String name)

• Thread(ThreadGroup g, String name)

Thread states

Threads can be in one of the following states:

New. After the thread is instantiated, the thread is in the New state until the
start() method is invoked. In this state, the thread is not considered alive.

Runnable. A thread comes into the runnable state when the start() method is
invoked on it. It can also enter the runnable state from the running state or blocked
state. The thread is considered alive when it is in this state.

Running. A thread moves from the runnable state into the running state when the
thread scheduler chooses it to be the currently running thread.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 32 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Alive, but not runnable. A thread can be alive but not in a runnable state for a
variety of reasons. It may be waiting, sleeping, or blocked.

Waiting. A thread is put into a waiting state by calling the wait() method. A call to
notify() or notifyAll() may bring the thread from the waiting state into the
runnable state. The sleep() method puts the thread into a sleeping state for a
specified amount of time in milliseconds, as follows:

try {
Thread.sleep(3 * 60 * 1000); // thread sleeps for 3 minutes

} catch(InterruptedException ex){}

Blocked. A thread may enter a blocked state while waiting for a resource like I/O or
the lock of another object. In this case, the thread moves into the runnable state
when the resource becomes available.

Dead. A thread is considered dead when its run() method is completely executed.
A dead thread can never enter any other state, not even if the start() method is
invoked on it.

Important thread methods

The sleep() method causes the current thread to sleep for a given time in
milliseconds:

public static void sleep(long millis) throws InterruptedException

The yield() method causes the current thread to move from the running state to
the runnable state, so that other threads may get a chance to run. However, the next
thread chosen for running might not be a different thread:

public static void yield()

The isAlive() method returns true if the thread upon which it is called has been
started but not moved to the dead state:

public final boolean isAlive()

When a thread calls join() on another thread, the currently running thread will wait
until the thread it joins with has completed:

void join()
void join(long millis)
void join(long millis, int nanos)

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 33 of 47

http://www.ibm.com/legal/copytrade.shtml

Thread synchronization

Every object in Java code has one lock, which is useful for ensuring that only one
thread accesses critical code in the object at a time. This synchronization helps
prevent the object's state from getting corrupted. If a thread has obtained the lock,
no other thread can enter the synchronized code until the lock is released. When the
thread holding the lock exits the synchronized code, the lock is released. Now
another thread can get the object's lock and execute the synchronized code. If a
thread tries to get the lock of an object when another thread has the lock, the thread
goes into a blocked state until the lock is released.

Synchronized
You can use the synchronized keyword to declare a method as synchronized.
This method cannot be accessed by multiple threads simultaneously. The
synchronized keyword can also be used to mark a block of code as synchronized.
For this, the argument passed should be the object whose lock you want to
synchronize on. The syntax is shown below:

synchronized(obj)
{

// here add statements to be synchronized
}
// obj is the object being synchronized

wait(), notify(), and notifyAll()
The wait(), notify(), and notifyAll() methods are defined in the
java.lang.Object class.

When the wait() method is invoked, a thread releases the lock on an object and
moves from the running state to the waiting state. The notify() method is used to
signal one of the threads waiting on the object to return to the runnable state. It is
not possible to specify which of the waiting threads should be made runnable. The
notifyAll() method causes all the waiting threads for an object to return to the
runnable state.

A thread can invoke wait() or notify() on a particular object only if it currently
holds the lock on that object. wait(), notify(), and notifyAll() should be
called only from within the synchronized code.

Summary

We saw how threads are defined in Java code either by implementing the
Runnable interface or by extending the Thread class. For the exam, you should
know all the Thread constructors. You should also know how a thread moves into
and out of the blocked state. To prevent multiple threads from running the same
object's method, we can use the synchronized keyword.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 34 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Exercise

Question:

Which of the following statements is not true about threads?

Choices:

• A. If the start() method is invoked twice on the same Thread object,
an exception is thrown at runtime.

• B. The order in which threads were started might differ from the order in
which they actually run.

• C. If the run() method is directly invoked on a Thread object, an
exception is thrown at runtime.

• D. If the sleep() method is invoked on a thread while executing
synchronized code, the lock is not released.

Correct choice:

• C

Explanation:

Statement C is the correct answer; it is not true about threads. If the run() method
is directly invoked on a Thread object, no exception is thrown at runtime. However,
the code written in the run() method would be executed by the current thread, not
by a new thread. So the correct way to start a thread is by invoking the start()
method, which causes the run() method to be executed by the new thread.
However, invoking the start() method twice on the same Thread object will
cause an IllegalThreadStateException to be thrown at runtime, so A is true.

B is true because the order in which threads run is decided by the thread scheduler,
no matter which thread was started first. D is true because a thread will not
relinquish the locks it holds when it goes into the sleeping state.

Section 9. Fundamental classes in the java.lang
package

Using the Math class

The Math class is final and all the methods defined in the Math class are

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 35 of 47

http://www.ibm.com/legal/copytrade.shtml

, which means you cannot inherit from the Math class and override these methods.
Also, the Math class has a private constructor, so you cannot instantiate it.

The Math class has the following methods: ceil(), floor(), max(), min(),
random(), abs(), round(), sin(), cos(), tan(), and sqrt().

The ceil() method returns the smallest double value that is not less than the
argument and is equal to a mathematical integer. For instance:

Math.ceil(5.4) // gives 6
Math.ceil(-6.3) // gives -6

The floor() method returns the largest double value that is not greater than the
argument and is equal to a mathematical integer. For instance:

Math.floor(5.4) // gives 5
Math.floor(-6.3) // gives -7

The max() method takes two numeric arguments and returns the greater of the two.
It is overloaded for int, long, float, or double arguments. For instance:

x = Math.max(10,-10); // returns 10

The min method takes two numeric arguments and returns the smaller of the two. It
is overloaded for int, long, float, or double arguments. For instance:

x = Math.min(10,-10); // returns -10

The random() method returns a double value with a positive sign, greater than or
equal to 0.0 and less than 1.0.

The abs() method returns the absolute value of the argument. It is overloaded to
take an int, long, float, or double argument. For instance:

Math.abs(-33) // returns 33

The round() method returns the integer closest to the argument (overloaded for
float and double arguments). If the number after the decimal point is less than
0.5, Math.round() returns the same result as Math.floor(). In all the other
cases, Math.round() works the same as Math.ceil(). For instance:

Math.round(-1.5) // result is -1
Math.round(1.8) // result is 2

Trigonometric functions

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 36 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The sin(), cos(), and tan() methods return the sine, cosine, and tangent of an
angle, respectively. In all three methods, the argument is the angle in radians.
Degrees can be converted to radians by using Math.toRadians(). For instance:

x = Math.sin(Math.toRadians(90.0)); // returns 1.0

The sqrt() function returns the square root of an argument of type double. For
instance:

x = Math.sqrt(25.0); // returns 5.0

If you pass a negative number to the sqrt() function, it returns NaN ("Not a
Number").

String and StringBuffer

Immutability of String objects
As you know, String s are objects in Java code. These objects, however, are
immutable. That is, their value, once assigned, can never be changed. For instance:

String msg = "Hello";
msg += " World";

Here the original String "Hello" is not changed. Instead, a new String is created
with the value "Hello World" and assigned to the variable msg. It is important to note
that though the String object is immutable, the reference variable is not.

String literals
In Java code, the String literals are kept in a memory pool for efficient use.

If you construct two String s using the same String literal without the new
keyword, then only one String object is created. For instance:

String s1 = "hello";
String s2 = "hello";

Here, both s1 and s2 point to the same String object in memory. As we said
above, String objects are immutable. So if we attempt to modify s1, a new
modified String is created. The original String referred to by s2, however,
remains unchanged.

StringBuffer
StringBuffer objects are mutable, which means their contents can be changed.
For instance:

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 37 of 47

http://www.ibm.com/legal/copytrade.shtml

Stringbuffer s = new StringBuffer("123");
s.append("456"); // Now s contains "123456"

You can see how this differs from the String object:

String s = new String("123");
s.concat("456"); // Here s contains "123"

Wrapper classes

Wrapper classes correspond to the primitive data types in the Java language. These
classes represent the primitive values as objects. All the wrapper classes except
Character have two constructors -- one that takes the primitive value and another
that takes the String representation of the value. For instance:

Integer i1 = new Integer(50);
Integer i2 = new Integer("50");

The Character class constructor takes a char type element as an argument:

Character c = new Character('A');

Wrapper objects are immutable. This means that once a wrapper object has a value
assigned to it, that value cannot be changed.

The valueOf() method
All wrapper classes (except Character) define a static method called valueOf(),
which returns the wrapper object corresponding to the primitive value represented by
the String argument. For instance:

Float f1 = Float.valueOf("1.5f");

The overloaded form of this method takes the representation base (binary, octal, or
hexadecimal) of the first argument as the second argument. For instance:

Integer I = Integer.valueOf("10011110",2);

Converting wrapper objects to primitives
All the numeric wrapper classes have six methods, which can be used to convert a
numeric wrapper to any primitive numeric type. These methods are byteValue,
doubleValue, floatValue, intValue, longValue, and shortValue. An
example is shown below:

Integer i = new Integer(20);

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 38 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

byte b = i.byteValue();

Parser methods
The six parser methods are parseInt, parseDouble, parseFloat, parseLong,
parseByte, and parseShort. They take a String as the argument and convert it
to the corresponding primitive. They throw a NumberFormatException if the
String is not properly formed. For instance:

double d = Double.parseDouble("4.23");

It can also take a radix(base) as the second argument:

int i = Integer.parseInt("10011110",2);

Base conversion
The Integer and Long wrapper classes have methods like toBinaryString()
and toOctalString(), which convert numbers in base 10 to other bases. For
instance:

String s = Integer.toHexString(25);

Summary

We discussed the usage and signature of the various utility methods of the Math
class. You are expected to memorize these for the exam. We also saw how String
objects are immutable, while StringBuffer objects are not. The wrapper classes
provide utility methods that allow you to represent primitives as objects. Make sure
you are familiar with all the parsing and conversion methods.

Exercise

Question:

What will be the result of an attempt to compile and run the following program?

class Test
{

public static void main(String args[])
{
String s1 = "abc";
String s2 = "abc";
s1 += "xyz";
s2.concat("pqr");
s1.toUpperCase();
System.out.println(s1 + s2);

}
}

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 39 of 47

http://www.ibm.com/legal/copytrade.shtml

Choices:

• A. "abcxyzabc"

• B. "abcxyzabcpqr"

• C. "ABCXYZabcpqr"

• D. "ABCXYZabc"

• E. Code does not compile

Correct choice:

• A

Explanation:

This code compiles and runs without errors, printing "abcxyzabc." In the given code,
s1 and s2 initially refer to the same String object "abc." When "xyz" is
concatenated to s1, a new String object "abcxyz" is created and s1 is made to
refer to it. Note that s2 still refers to the original String object "abc," which is
unchanged. The concat() and toUpperCase() methods do not have any effect,
because the new String objects created as a result of these operations do not
have any references stored. So s1 contains "abcxyz" and s2 contains "abc" at the
end, making A the correct result.

Section 10. The Collections framework

Collections and collections interfaces

Collections are objects used to group together and manipulate multiple data
elements. They can dynamically grow and shrink, which is their advantage over
arrays. Collections provide methods to add objects to a collection, remove
objects from it, check if an object is present in it, retrieve objects from it, and iterate
through it. See Resources for more information on the Collections framework.

Collection interfaces
The inheritance hierarchy of the core collection interface is shown here:

Figure 2. Inheritance hierarchy of the core collection interface

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 40 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Collection is the root interface, from which the Set and List interfaces extend.
The Map interface does not extend the Collection interface. Also, do not confuse
the Collection interface with the Collections class, which holds static utility
methods for collections.

Let's analyze the basic behavior of these interfaces. The List interface represents
ordered collections while Set cannot contain duplicate elements. The Map interface
matches unique keys to values. SortedSet holds elements in sorted order while
SortedMap orders the mapping in the sorted order of keys. The classes that
implement these interfaces are listed below:

Set HashSet TreeSet LinkedHashSet

List Vector ArrayList LinkedList

Map HashMap HashTable TreeMap LinkedHashMap

Set classes
The classes implementing the Set interface do not allow duplicate elements.

A HashSet is not ordered or sorted. This class offers constant time performance for
basic operations like add and remove. TreeSet arranges the elements in
ascending element order, sorted according to the natural order of the elements.

A LinkedHashSet is an ordered HashSet, which gives the elements in the order
of insertion or last access. For instance:

LinkedHashSet linkSet = new LinkedHashSet();
linkSet.add("mango");
linkSet.add("apple");
linkSet.add("mango");
linkSet.add("banana");
Iterator i = linkSet.iterator();
while(i.hasNext())

System.out.print(i.next()); // Prints "mango apple banana"

List classes

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 41 of 47

http://www.ibm.com/legal/copytrade.shtml

A List is an ordered collection, which allows positional access and search.

The classes implementing List are ordered by index position. An ArrayList
enables fast iteration and constant speed positional access. A Vector is similar to
ArrayList, only slower because it is synchronized. LinkedList allows fast
insertion and deletion at the beginning or end. It is commonly used for implementing
stacks and queues. For instance:

ArrayList list = new ArrayList();
list.add("mango");
list.add("apple");
list.add("mango");
list.add("banana");
Iterator i = list.iterator();
while(i.hasNext())

System.out.print(i.next()); // Prints "mango apple mango banana"

Map classes
The classes implementing the Map interface map unique keys to specific values.

The HashMap class is not sorted or ordered. It allows one null key and many null
values.

Hashtable is similar to HashMap, but does not allow null keys and values. It's also
slower than HashMap because it is synchronized. The J2SE 1.4 LinkedHashMap
class iterates by insertion or last accessed order. It allows one null key and many
null values.

TreeMap is a map in ascending key order, sorted according to the natural order for
the key's class.

The equals() method of java.lang.Object
The equals() method, shown below, should implement an equivalence relation:

public boolean equals(Object obj)

In addition, the equals() method is:

• Reflexive: For any reference value x, x.equals(x) should return true.

• Symmetric: For any reference values x and y, x.equals(y) should
return true only if y.equals(x) returns true.

• Transitive: For any reference values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should
return true.

• Consistent: For any reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false,
provided no information used in equal comparisons on the object is
modified.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 42 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

For any non-null reference value x, x.equals(null) should return false.

The hashCode() method of java.lang.Object
The hashCode() method, shown below, of the java.lang.Object class returns
the hash code value for the object. The hash code value of an object gives an
integer that can be used by some collection classes like HashSet and Hashtable
to map its objects into buckets in memory. The process of hashing enables efficient
storage and retrieval of objects from the collection.

public int hashCode()

If two objects are equal as given by the equals() method, then their hash codes
must be the same. So whenever equals() is overridden, hashCode() also should
be implemented.

However, the reverse is not required. Two objects that are not equal can have the
same hash code. This is because it is not always possible to ensure unique hash
codes. However, it is better to have distinct hash codes for distinct objects to
improve efficiency and performance.

The object comparison logic used by the equals() method usually involves
instance variables of the two objects. The same instance variables should also be
used by the hashCode() implementation. For instance:

public class Test
{

int i;
public boolean equals(Object o)
{
Test t = (Test)o;
if (t.i == this.i)

return true;
return false;

}
public int hashCode()
{
return i * 31;

}
}

Whenever it is invoked on the same object more than once during an execution of a
Java application, the hashCode() method must consistently return the same
integer, provided no information used in equal comparison on the object is modified.
It is inappropriate to involve a random number when computing the hash code,
because it would not return the same hash code for multiple invocations of the
method. The hash code of a null element is defined as zero.

When you implement the equals() and hashCode() methods, it is not
appropriate to use transient variables.

Summary

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 43 of 47

http://www.ibm.com/legal/copytrade.shtml

We learned about the different types of collections like Lists, Sets, and Maps. It is
important to understand the behavior of each of them and the situation in which they
are preferred or required. We also saw the significance of the equals() and
hashCode() methods. You should know the appropriate ways to implement these
methods.

Exercise

Question:

Which is the most suitable Java collection class for storing various companies and
their stock prices? It is required that the class should support synchronization
inherently.

Choices:

• A. Hashtable

• B. HashMap

• C. LinkedHashMap

• D. HashSet

• E. TreeMap

Correct choice:

• A

Explanation:

To store the company names and their corresponding stock prices, a Map
implementation would be appropriate because it stores key-value pairs. HashSet is
not the correct answer because it does not implement the Map interface.
Hashtable, HashMap, TreeMap, and LinkedHashMap are the classes that
implement the Map interface. Among these, only the Hashtable class is inherently
synchronized.

Section 11. Summary

Summary

This wraps up the SCJP 1.4 tutorial. It would be advisable to test each new concept
you learned with the help of small practice examples. This will help foster your

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 44 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

understanding of the material presented in this tutorial.

The most difficult questions in the exam center around threads and garbage
collection. Pay extra attention to these chapters. Remember that the garbage
collector and thread scheduler implementations are platform specific.

It is not enough if you just memorize the syntax and APIs that are part of the exam. It
is very important to acquire a deep understanding of the core concepts covered in
the exam objectives.

Regardless of your reasons for going after certification -- whether you want the
professional advantage or the personal challenge (or whether getting certified is a
job requirement) -- your approach to the task will determine the success of its
outcome. Good preparation, attention to details, and a positive attitude are essential
if you want to pass the SCJP exam.

I hope this tutorial is helpful in preparing you for your exam, and I wish you the best
of luck.

I would like to acknowledge Seema Manivannan for her invaluable contribution in
writing this tutorial.

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 45 of 47

http://www.ibm.com/legal/copytrade.shtml

Resources

•
• Khalid Mughal and Rolf Rasmussen's A Programmer's Guide to Java

Certification (Addison-Wesley, 1999) is a great reference if you're seeking
a structured learning format.

• Kathy Sierra and Bert Bates's Sun Certified Programmer & Developer for
Java 2 Study Guide (Exam 310-035 & 310-027) is another useful study
guide.

• William Brogden's Java 2 Exam Prep, Second Edition (Exam: 310-025)
and Java 2 Exam Cram, Second Edition (Exam 310-025) are both
excellent books. Previously published by The Coriolis Group, the series is
being relaunched by Que Publishing. Exam Cram is a quick review,
whereas the older Exam Prep is a fairly comprehensive introduction to
Java language fundamentals.

• William Brogden's home page contains a nice selection of Java
certification information and resources.

• Check out " An SCJP 1.4 certification primer " (developerWorks, June
2003) by Pradeep Chopra, the author of this tutorial.

• The " Java Collections Framework " tutorial (developerWorks, April 2001)
is helpful if you need to brush up on the Java Collections API.

• The Programming With Assertions study guide, also from Sun, is
recommended reading before you take the new SCJP 1.4 exam.

• In his monthly developerWorks column, Magic with Merlin , John Zukowski
covers new features of JDK 1.4, including one installment titled " Working
with assertions " (developerWorks, February 2002).

• For more on garbage collection, see the following articles from
developerWorks:

• In " Mash that trash ", you'll learn more about how incremental
compaction reduces pause times.

• The three-part series " Sensible sanitation " describes the garbage
collection strategy employed by the IBM 1.2 and 1.3 Developer Kits for
the Java Platform.

• In his October 2003 installment of Java theory and practice, Brian
Goetz provides " A brief history of garbage collection. "

• In " Fine-tuning Java garbage collection performance, " learn how to
detect and troubleshoot garbage collection issues.

• If you're interested in learning more about threading in the Java language,
" Introduction to Java threads " by Brian Goetz (developerWorks,
September 2002) explores threading basics, exchanging data between
threads, controlling threads, and how threads can communicate with each
other.

developerWorks® ibm.com/developerWorks

Java certification success, Part 1: SCJP
Page 46 of 47 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.amazon.com/exec/obidos/tg/detail/-/0201728281/104-2060234-3908736?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/0201728281/104-2060234-3908736?v=glance
http://www.amazon.com/exec/obidos/ASIN/0072226846/qid=1058087637/sr=2-1/ref=sr_2_1/104-7716431-5591106
http://www.amazon.com/exec/obidos/ASIN/0072226846/qid=1058087637/sr=2-1/ref=sr_2_1/104-7716431-5591106
http://www.amazon.com/exec/obidos/tg/detail/-/1588801403/qid=1033152889/sr=1-1/ref=sr_1_1/104-1224949-8774363?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/158880139X/qid=1033152845/sr=1-1/ref=sr_1_1/104-1224949-8774363?v=glance
http://www.lanw.com/java/javacert/default.htm
http://www.ibm.com/developerworks/java/library/j-scjp/
http://www.ibm.com/developerworks/edu/j-dw-javacoll-i.html
http://www.ibm.com/developerworks/views/java/articles.jsp?sort_order=desc&expand=&sort_by=Date&show_abstract=true&view_by=Search&search_by=merlin:
http://www.ibm.com/developerworks/java/library/j-mer0219.html
http://www.ibm.com/developerworks/java/library/j-mer0219.html
http://www.ibm.com/developerworks/ibm/library/i-incrcomp/
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/java/library/j-jtp10283/
http://www.ibm.com/developerworks/ibm/library/i-gctroub/
http://www.ibm.com/developerworks/edu/j-dw-javathread-i.html
http://www.ibm.com/legal/copytrade.shtml

• Marcus Green is a well-regarded Java certification guru. His Java
certification site is home to an SCJP tutorial, free mock examinations, a
certification discussion forum, and information about his Java certification
training courses.

• The IBM Education Web site is a good place to start if you're looking for
personalized Java programming training.

• Whizlabs Software specializes in IT certification simulators, including the
Whizlabs Java Certification (SCJP 1.4) Exam Simulator for J2SE 1.4.

• Whizlabs Software also offers instructor-led, online training for Java
Certification (SCJP 1.4), delivered live by the author of the SCJP 1.4 exam
simulator, as well as Java certification discussion forums.

• JavaRanch ("a friendly place for Java greenhorns") hosts a community
discussion forum and the SCJP rules roundup, along with a free
certification mock exam.

• The IBM professional certifications site lists the available certification
programs, categorized by brand.

• Sun Microsystems's J2SE 1.2 and J2SE 1.4 API specs are essential
reading for the SCJP exam.

• You can learn quite a lot about the hashCode() and equals() methods
by reading Chapter 3 of Effective Java , available online courtesy of Sun
Microsystems.

• See the developerWorks Java technology tutorials index for a complete
listing of free tutorials.

• You can also find hundreds of articles about every aspect of Java
programming in the developerWorks Java technology zone.

ibm.com/developerWorks developerWorks®

Java certification success, Part 1: SCJP
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 47 of 47

http://www.jchq.net/
http://www.jchq.net/
http://www-3.ibm.com/software/info/education/
http://www.whizlabs.com/jwhiz.html
http://www.whizlabs.com/scjp/training.html
http://www.whizlabs.com/scjp/training.html
http://www.whizlabs.com/ubbthreads/ubbthreads.php
http://www.javaranch.com/
http://www-1.ibm.com/certify/certs/index.shtml
http://java.sun.com/apis.html
http://www.ibm.com/developerworks/views/java/tutorials.jsp
http://www.ibm.com/developerworks/java/
http://www.ibm.com/legal/copytrade.shtml

Programming With Assertions

 Programming With Assertions
Documentation

Contents

An assertion is a statement in the JavaTM programming language that enables you to
test your assumptions about your program. For example, if you write a method that
calculates the speed of a particle, you might assert that the calculated speed is less
than the speed of light.

Each assertion contains a boolean expression that you believe will be true when the
assertion executes. If it is not true, the system will throw an error. By verifying that
the boolean expression is indeed true, the assertion confirms your assumptions about
the behavior of your program, increasing your confidence that the program is free of
errors.

Experience has shown that writing assertions while programming is one of the
quickest and most effective ways to detect and correct bugs. As an added benefit,
assertions serve to document the inner workings of your program, enhancing
maintainability.

This document shows you how to program with assertions. It covers the topics:

● Introduction

● Putting Assertions Into Your Code

● Compiling Files That Use Assertions

● Enabling and Disabling Assertions

● Compatibility With Existing Programs

● Design FAQ

Introduction

The assertion statement has two forms. The first, simpler form is:

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (1 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/j2se/1.4.2/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html

Programming With Assertions

 assert Expression1 ;

where Expression1 is a boolean expression. When the system runs the assertion, it

evaluates Expression1 and if it is false throws an AssertionError with no detail

message.

The second form of the assertion statement is:

 assert Expression1 : Expression2 ;

where:

● Expression1 is a boolean expression.

● Expression2 is an expression that has a value. (It cannot be an invocation of a

method that is declared void.)

Use this version of the assert statement to provide a detail message for the
AssertionError. The system passes the value of Expression2 to the appropriate

AssertionError constructor, which uses the string representation of the value as the
error's detail message.

The purpose of the detail message is to capture and communicate the details of the
assertion failure. The message should allow you to diagnose and ultimately fix the
error that led the assertion to fail. Note that the detail message is not a user-level
error message, so it is generally unnecessary to make these messages
understandable in isolation, or to internationalize them. The detail message is meant
to be interpreted in the context of a full stack trace, in conjunction with the source
code containing the failed assertion.

Like all uncaught exceptions, assertion failures are generally labeled in the stack
trace with the file and line number from which they were thrown. The second form of
the assertion statement should be used in preference to the first only when the
program has some additional information that might help diagnose the failure. For
example, if Expression1 involves the relationship between two variables x and y, the

second form should be used. Under these circumstances, a reasonable candidate for
Expression2 would be "x: " + x + ", y: " + y.

In some cases Expression1 may be expensive to evaluate. For example, suppose you

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (2 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/AssertionError.html

Programming With Assertions

write a method to find the minimum element in an unsorted list, and you add an
assertion to verify that the selected element is indeed the minimum. The work done
by the assert will be at least as expensive as the work done by the method itself. To
ensure that assertions are not a performance liability in deployed applications,
assertions can be enabled or disabled when the program is started, and are disabled
by default. Disabling assertions eliminates their performance penalty entirely. Once
disabled, they are essentially equivalent to empty statements in semantics and
performance. See Enabling and Disabling Assertions for more information.

The addition of the assert keyword to the Java programming language has
implications for existing code. See Compatibility With Existing Programs for more

information.

Putting Assertions Into Your Code

There are many situations where it is good to use assertions. This section covers
some of them:

● Internal Invariants

● Control-Flow Invariants

● Preconditions, Postconditions, and Class Invariants

There are also a few situations where you should not use them:

● Do not use assertions for argument checking in public methods.

Argument checking is typically part of the published specifications (or
contract) of a method, and these specifications must be obeyed whether
assertions are enabled or disabled. Another problem with using assertions for
argument checking is that erroneous arguments should result in an appropriate
runtime exception (such as IllegalArgumentException,
IndexOutOfBoundsException, or NullPointerException). An assertion failure
will not throw an appropriate exception.

● Do not use assertions to do any work that your application requires for correct
operation.

Because assertions may be disabled, programs must not assume that the

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (3 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

boolean expression contained in an assertion will be evaluated. Violating this
rule has dire consequences. For example, suppose you wanted to remove all of
the null elements from a list names, and knew that the list contained one or
more nulls. It would be wrong to do this:

 // Broken! - action is contained in assertion
 assert names.remove(null);

The program would work fine when asserts were enabled, but would fail when
they were disabled, as it would no longer remove the null elements from the
list. The correct idiom is to perform the action before the assertion and then
assert that the action succeeded:

 // Fixed - action precedes assertion
 boolean nullsRemoved = names.remove(null);
 assert nullsRemoved; // Runs whether or not asserts are enabled

As a rule, the expressions contained in assertions should be free of side
effects: evaluating the expression should not affect any state that is visible
after the evaluation is complete. One exception to this rule is that assertions
can modify state that is used only from within other assertions. An idiom that

makes use of this exception is presented later in this document.

Internal Invariants

Before assertions were available, many programmers used comments to indicate
their assumptions concerning a program's behavior. For example, you might have
written something like this to explain your assumption about an else clause in a
multiway if-statement:

 if (i % 3 == 0) {
 ...
 } else if (i % 3 == 1) {
 ...
 } else { // We know (i % 3 == 2)
 ...
 }

You should now use an assertion whenever you would have written a comment that
asserts an invariant. For example, you should rewrite the previous if-statement like

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (4 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

this:

 if (i % 3 == 0) {
 ...
 } else if (i % 3 == 1) {
 ...
 } else {
 assert i % 3 == 2 : i;
 ...
 }

Note, incidentally, that the assertion in the above example may fail if i is negative, as
the % operator is not a true modulus operator, but computes the remainder, which
may be negative.

Another good candidate for an assertion is a switch statement with no default case.
The absence of a default case typically indicates that a programmer believes that one
of the cases will always be executed. The assumption that a particular variable will
have one of a small number of values is an invariant that should be checked with an
assertion. For example, suppose the following switch statement appears in a program
that handles playing cards:

 switch(suit) {
 case Suit.CLUBS:
 ...
 break;

 case Suit.DIAMONDS:
 ...
 break;

 case Suit.HEARTS:
 ...
 break;

 case Suit.SPADES:
 ...
 }

It probably indicates an assumption that the suit variable will have one of only four
values. To test this assumption, you should add the following default case:

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (5 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

 default:
 assert false : suit;

If the suit variable takes on another value and assertions are enabled, the assert will
fail and an AssertionError will be thrown.

An acceptable alternative is:

 default:
 throw new AssertionError(suit);

This alternative offers protection even if assertions are disabled, but the extra
protection adds no cost: the throw statement won't execute unless the program has
failed. Moreover, the alternative is legal under some circumstances where the assert
statement is not. If the enclosing method returns a value, each case in the switch
statement contains a return statement, and no return statement follows the switch
statement, then it would cause a syntax error to add a default case with an assertion.
(The method would return without a value if no case matched and assertions were
disabled.)

Control-Flow Invariants

The previous example not only tests an invariant, it also checks an assumption about
the application's flow of control. The author of the original switch statement probably
assumed not only that the suit variable would always have one of four values, but
also that one of the four cases would always be executed. It points out another
general area where you should use assertions: place an assertion at any location you
assume will not be reached. The assertions statement to use is:

 assert false;

For example, suppose you have a method that looks like this:

 void foo() {
 for (...) {
 if (...)
 return;
 }
 // Execution should never reach this point!!!
 }

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (6 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

Replace the final comment so that the code now reads:

 void foo() {
 for (...) {
 if (...)
 return;
 }
 assert false; // Execution should never reach this point!
 }

Note: Use this technique with discretion. If a statement is unreachable as defined in
the Java Language Specification (JLS 14.20), you will get a compile time error if

you try to assert that it is not reached. Again, an acceptable alternative is simply to
throw an AssertionError.

Preconditions, Postconditions, and Class Invariants

While the assert construct is not a full-blown design-by-contract facility, it can
help support an informal design-by-contract style of programming. This section
shows you how to use asserts for:

● Preconditions — what must be true when a method is invoked.

❍ Lock-Status Preconditions — preconditions concerning whether or not a

given lock is held.
● Postconditions — what must be true after a method completes successfully.

● Class invariants — what must be true about each instance of a class.

Preconditions

By convention, preconditions on public methods are enforced by explicit checks that
throw particular, specified exceptions. For example:

 /**
 * Sets the refresh rate.

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (7 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#236365

Programming With Assertions

 *
 * @param rate refresh rate, in frames per second.
 * @throws IllegalArgumentException if rate <= 0 or
 * rate > MAX_REFRESH_RATE.
 */
 public void setRefreshRate(int rate) {
 // Enforce specified precondition in public method
 if (rate <= 0 || rate > MAX_REFRESH_RATE)
 throw new IllegalArgumentException("Illegal rate: " + rate);

 setRefreshInterval(1000/rate);
 }

This convention is unaffected by the addition of the assert construct. Do not use
assertions to check the parameters of a public method. An assert is inappropriate
because the method guarantees that it will always enforce the argument checks. It
must check its arguments whether or not assertions are enabled. Further, the assert
construct does not throw an exception of the specified type. It can throw only an
AssertionError.

You can, however, use an assertion to test a nonpublic method's precondition that
you believe will be true no matter what a client does with the class. For example, an
assertion is appropriate in the following "helper method" that is invoked by the
previous method:

 /**
 * Sets the refresh interval (which must correspond to a legal frame rate).
 *
 * @param interval refresh interval in milliseconds.
 */
 private void setRefreshInterval(int interval) {
 // Confirm adherence to precondition in nonpublic method
 assert interval > 0 && interval <= 1000/MAX_REFRESH_RATE : interval;

 ... // Set the refresh interval
 }

Note, the above assertion will fail if MAX_REFRESH_RATE is greater than 1000 and
the client selects a refresh rate greater than 1000. This would, in fact, indicate a bug
in the library!

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (8 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

Lock-Status Preconditions

Classes designed for multithreaded use often have non-public methods with
preconditions relating to whether or not some lock is held. For example, it is not
uncommon to see something like this:

 private Object[] a;

 public synchronized int find(Object key) {
 return find(key, a, 0, a.length);
 }

 // Recursive helper method - always called with a lock on this object
 private int find(Object key, Object[] arr, int start, int len) {
 ...
 }

A static method called holdsLock has been added to the Thread class to test whether
the current thread holds the lock on a specified object. This method can be used in
combination with an assert statement to supplement a comment describing a lock-
status precondition, as shown in the following example:

 // Recursive helper method - always called with a lock on this.
 private int find(Object key, Object[] arr, int start, int len) {
 assert Thread.holdsLock(this); // lock-status assertion
 ...
 }

Note that it is also possible to write a lock-status assertion asserting that a given
lock isn't held.

Postconditions

You can test postcondition with assertions in both public and nonpublic methods. For
example, the following public method uses an assert statement to check a post
condition:

 /**
 * Returns a BigInteger whose value is (this-1 mod m).
 *

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (9 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

 * @param m the modulus.
 * @return this-1 mod m.
 * @throws ArithmeticException m <= 0, or this BigInteger
 * has no multiplicative inverse mod m (that is, this BigInteger
 * is not relatively prime to m).
 */
 public BigInteger modInverse(BigInteger m) {
 if (m.signum <= 0)
 throw new ArithmeticException("Modulus not positive: " + m);

 ... // Do the computation

 assert this.multiply(result).mod(m).equals(ONE) : this;
 return result;
 }

Occasionally it is necessary to save some data prior to performing a computation in
order to check a postcondition. You can do this with two assert statements and a
simple inner class that saves the state of one or more variables so they can be
checked (or rechecked) after the computation. For example, suppose you have a
piece of code that looks like this:

 void foo(int[] array) {
 // Manipulate array
 ...

 // At this point, array will contain exactly the ints that it did
 // prior to manipulation, in the same order.
 }

Here is how you could modify the above method to turn the textual assertion of a
postcondition into a functional one:

 void foo(final int[] array) {

 // Inner class that saves state and performs final consistency check
 class DataCopy {
 private int[] arrayCopy;

 DataCopy() { arrayCopy = (int[]) array.clone(); }

 boolean isConsistent() { return Arrays.equals(array, arrayCopy); }

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (10 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

 }

 DataCopy copy = null;

 // Always succeeds; has side effect of saving a copy of array
 assert ((copy = new DataCopy()) != null);

 ... // Manipulate array

 // Ensure array has same ints in same order as before manipulation.
 assert copy.isConsistent();
 }

You can easily generalize this idiom to save more than one data field, and to test
arbitrarily complex assertions concerning pre-computation and post-computation
values.

You might be tempted to replace the first assert statement (which is executed solely
for its side-effect) by the following, more expressive statement:

 copy = new DataCopy();

Don't make this replacement. The statement above would copy the array whether or
not asserts were enabled, violating the principle that assertions should have no cost
when disabled.

Class Invariants

A class invariants is a type of internal invariant that applies to every instance of a

class at all times, except when an instance is in transition from one consistent state
to another. A class invariant can specify the relationships among multiple attributes,
and should be true before and after any method completes. For example, suppose
you implement a balanced tree data structure of some sort. A class invariant might
be that the tree is balanced and properly ordered.

The assertion mechanism does not enforce any particular style for checking
invariants. It is sometimes convenient, though, to combine the expressions that check
required constraints into a single internal method that can be called by assertions.
Continuing the balanced tree example, it might be appropriate to implement a private
method that checked that the tree was indeed balanced as per the dictates of the data

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (11 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

structure:

 // Returns true if this tree is properly balanced
 private boolean balanced() {
 ...
 }

Because this method checks a constraint that should be true before and after any
method completes, each public method and constructor should contain the following
line immediately prior to its return:

 assert balanced();

It is generally unnecessary to place similar checks at the head of each public method
unless the data structure is implemented by native methods. In this case, it is
possible that a memory corruption bug could corrupt a "native peer" data structure in
between method invocations. A failure of the assertion at the head of such a method
would indicate that such memory corruption had occurred. Similarly, it may be
advisable to include class invariant checks at the heads of methods in classes whose
state is modifiable by other classes. (Better yet, design classes so that their state is
not directly visible to other classes!)

Advanced Uses

The following sections discuss topics that apply only to resource-constrained
devices and to systems where asserts must not be disabled in the field. If you have
no interest in these topics, skip to the next section, "Compiling Files that Use

Assertions".

Removing all Trace of Assertions from Class Files

Programmers developing applications for resource-constrained devices may wish to
strip assertions out of class files entirely. While this makes it impossible to enable
assertions in the field, it also reduces class file size, possibly leading to improved
class loading performance. In the absence of a high quality JIT, it could lead to
decreased footprint and improved runtime performance.

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (12 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

The assertion facility offers no direct support for stripping assertions out of class
files. The assert statement may, however, be used in conjunction with the
"conditional compilation" idiom described in JLS 14.20, enabling the compiler to

eliminate all traces of these asserts from the class files that it generates:

 static final boolean asserts = ... ; // false to eliminate asserts

 if (asserts)
 assert <expr> ;

Requiring that Assertions are Enabled

Programmers of certain critical systems might wish to ensure that assertions are not
disabled in the field. The following static initialization idiom prevents a class from
being initialized if its assertions have been disabled:

 static {
 boolean assertsEnabled = false;
 assert assertsEnabled = true; // Intentional side effect!!!
 if (!assertsEnabled)
 throw new RuntimeException("Asserts must be enabled!!!");
 }

Put this static-initializer at the top of your class.

Compiling Files That Use Assertions

In order for the javac compiler to accept code containing assertions, you must use
the -source 1.4 command-line option as in this example:

 javac -source 1.4 MyClass.java

This flag is necessary so as not to cause source compatibility problems.

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (13 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#236365

Programming With Assertions

Enabling and Disabling Assertions

By default, assertions are disabled at runtime. Two command-line switches allow
you to selectively enable or disable assertions.

To enable assertions at various granularities, use the -enableassertions, or -ea,
switch. To disable assertions at various granularities, use the -disableassertions,
or -da, switch. You specify the granularity with the arguments that you provide to
the switch:

● no arguments
 Enables or disables assertions in all classes except system classes.

● packageName...
 Enables or disables assertions in the named package and any subpackages.

● ...
 Enables or disables assertions in the unnamed package in the current
working directory.

● className
 Enables or disables assertions in the named class

For example, the following command runs a program, BatTutor, with assertions
enabled in only package com.wombat.fruitbat and its subpackages:

 java -ea:com.wombat.fruitbat... BatTutor

If a single command line contains multiple instances of these switches, they are
processed in order before loading any classes. For example, the following command
runs the BatTutor program with assertions enabled in package com.wombat.fruitbat
but disabled in class com.wombat.fruitbat.Brickbat:

 java -ea:com.wombat.fruitbat... -da:com.wombat.fruitbat.Brickbat BatTutor

The above switches apply to all class loaders. With one exception, they also apply to
system classes (which do not have an explicit class loader). The exception concerns
the switches with no arguments, which (as indicated above) do not apply to system
classes. This behavior makes it easy to enable asserts in all classes except for
system classes, which is commonly desirable.

To enable assertions in all system classes, use a different

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (14 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

switch: -enablesystemassertions, or -esa. Similarly, to disable assertions in system
classes, use -disablesystemassertions, or -dsa.

For example, the following command runs the BatTutor program with assertions
enabled in system classes, as well as in the com.wombat.fruitbat package and its
subpackages:

 java -esa -ea:com.wombat.fruitbat...

The assertion status of a class (enabled or disabled) is set at the time it is initialized,
and does not change. There is, however, one corner case that demands special
treatment. It is possible, though generally not desirable, to execute methods or
constructors prior to initialization. This can happen when a class hierarchy contains a
circularity in its static initialization.

If an assert statement executes before its class is initialized, the execution must
behave as if assertions were enabled in the class. This topic is discussed in detail in
the assertions specification.

Compatibility With Existing Programs

The addition of the assert keyword to the Java programming language does not cause
any problems with preexisting binaries (.class files). If you try to compile an
application that uses assert as an identifier, however, you will receive a warning or
error message. In order to ease the transition from a world where assert is a legal
identifier to one where it isn't, the compiler supports two modes of operation in this
release:

● source mode 1.3 (default) — the compiler accepts programs that use assert as
an identifier, but issues warnings. In this mode, programs are not permitted to
use the assert statement.

● source mode 1.4 — the compiler generates an error message if the program
uses assert as an identifier. In this mode, programs are permitted to use the
assert statement.

Unless you specifically request source mode 1.4 with the -source 1.4 flag, the
compiler operates in source mode 1.3. If you forget to use this this flag, programs
that use the new assert statement will not compile. Having the compiler use the old
semantics as its default behavior (that is, allowing assert to be used as an identifier)

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (15 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/docs/books/jls/assert-spec.html#semantics

Programming With Assertions

was done for maximal source compatibility. Source mode 1.3 is likely to be phased
out over time.

Design FAQ

Here is a collection of frequently asked questions concerning the design of the
assertion facility.

● General Questions

● Compatibility

● Syntax and Semantics

● The AssertionError Class

● Enabling and Disabling Assertions

General Questions

1. Why provide an assertion facility, given that one can program assertions atop
the Java programming language with no special support?

Although ad hoc implementations are possible, they are of necessity either ugly
(requiring an if statement for each assertion) or inefficient (evaluating the
condition even if assertions are disabled). Further, each ad hoc implementation
has its own means of enabling and disabling assertions, which lessens the
utility of these implementations, especially for debugging in the field. As a
result of these shortcomings, assertions have never become a part of the
culture among engineers using the Java programming language. Adding
assertion support to the platform stands a good chance of rectifying this
situation.

2. Why does this facility justify a language change, as opposed to a library

solution?

We recognize that a language change is a serious effort, not to be undertaken
lightly. The library approach was considered. It was, however, deemed

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (16 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

essential that the runtime cost of assertions be negligible if they are disabled.
In order to achieve this with a library, the programmer is forced to hard-code
each assertion as an if statement. Many programmers would not do this. Either
they would omit the if statement and performance would suffer, or they would
ignore the facility entirely. Note also that assertions were contained in James
Gosling's original specification for the Java programming language. Assertions
were removed from the Oak specification because time constraints prevented a
satisfactory design and implementation.

3. Why not provide a full-fledged design-by-contract facility with preconditions,

postconditions and class invariants, like the one in the Eiffel programming
language?

We considered providing such a facility, but were unable to convince ourselves
that it is possible to graft it onto the Java programming language without
massive changes to the Java platform libraries, and massive inconsistencies
between old and new libraries. Further, we were not convinced that such a
facility would preserve the simplicity that is the hallmark of the Java
programming language. On balance, we came to the conclusion that a simple
boolean assertion facility was a fairly straight-forward solution and far less
risky. It's worth noting that adding a boolean assertion facility to the language
doesn't preclude adding a full-fledged design-by-contract facility at some
time in the future.

The simple assertion facility does enable a limited form of design-by-contract

style programming. The assert statement is appropriate for nonpublic

precondition, postcondition and class invariant checking. Public precondition
checking should still be performed by checks inside methods that result in
particular, documented exceptions, such as IllegalArgumentException and
IllegalStateException.

4. In addition to boolean assertions, why not provide an assert-like construct to

suppress the execution of an entire block of code if assertions are disabled?

Providing such a construct would encourage programmers to put complex
assertions inline, when they are better relegated to separate methods.

Compatibility

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (17 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

1. Won't the new keyword cause compatibility problems with existing programs
that use assert as an identifier?

Yes, for source files. (Binaries for classes that use assert as an identifier will
continue to work fine.) To ease the transition, we implemented a strategy

whereby developers can continue using assert as an identifier during a
transitional period.

2. Doesn't this facility produce class files that cannot be run against older JREs?

Yes. Class files will contain calls to the new ClassLoader and Class methods,
such as desiredAssertionStatus. If a class file containing calls to these methods
is run against an older JRE (whose ClassLoader class doesn't define the
methods), the program will fail at run time, throwing a NoSuchMethodError. It
is generally the case that programs using new facilities are not compatible with
older releases.

Syntax and Semantics

1. Why allow primitive types in Expression2?

There is no compelling reason to restrict the type of this expression. Allowing
arbitrary types provides convenience for developers who, for example, want to
associate a unique integer code with each assertion. Further, it makes this
expression feel like the argument of System.out.println(...), which is seen as
desirable.

The AssertionError Class

1. When an AssertionError is generated by an assert statement in which
Expression2 is absent, why isn't the program text of the asserted condition

used as the detail message (for example, "height < maxHeight")?

While doing so might improve out-of-the-box usefulness of assertions in
some cases, the benefit doesn't justify the cost of adding all those string

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (18 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

constants to .class files and runtime images.

2. Why doesn't an AssertionError allow access to the object that generated it?

Similarly, why not pass an arbitrary object from the assertion to the
AssertionError constructor in place of a detail message?

Access to these objects would encourage programmers to attempt to recover
from assertion failures, which defeats the purpose of the facility.

3. Why not provide context accessors (like getFile, getline, getMethod) on

AssertionError?

This facility is best provided on Throwable, so it may be used for all
throwables, not just just assertion errors. We enhanced Throwable with the
getStackTrace method to provide this functionality.

4. Why is AssertionError a subclass of Error rather than RuntimeException?

This issue was controversial. The expert group discussed it at at length, and
came to the conclusion that Error was more appropriate to discourage
programmers from attempting to recover from assertion failures. It is, in
general, difficult or impossible to localize the source of an assertion failure.
Such a failure indicates that the program is operating "outside of known space,"
and attempts to continue execution are likely to be harmful. Further,
convention dictates that methods specify most runtime exceptions they may
throw (with @throws doc comments). It makes little sense to include in a
method's specification the circumstances under which it may generate an
assertion failure. Such information may be regarded as an implementation
detail, which can change from implementation to implementation and release to
release.

Enabling and Disabling Assertions

1. Why not provide a compiler flag to completely eliminate assertions from object
files?

It is a firm requirement that it be possible to enable assertions in the field, for

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (19 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

enhanced serviceability. It would have been possible to also permit developers
to eliminate assertions from object files at compile time. Assertions can contain
side effects, though they should not, and such a flag could therefore alter the
behavior of a program in significant ways. It is viewed as good thing that there
is only one semantics associated with each valid Java program. Also, we want
to encourage users to leave asserts in object files so they can be enabled in the
field. Finally, the spec demands that assertions behave as if enabled when a
class runs before it is initialized. It would be impossible to offer these
semantics if assertions were stripped from the class file. Note, however, that
the standard "conditional compilation idiom" described in JLS 14.20 can be used
to achieve this effect for developers who really want it.

2. Why do the commands that enable and disable assertions use package-tree

semantics instead of the more traditional package semantics?

Hierarchical control is useful, as programmers really do use package
hierarchies to organize their code. For example, package-tree semantics allow
assertions to be enabled or disabled in all of Swing at one time.

3. Why does setClassAssertionStatus return a boolean instead of throwing an

exception if it is invoked when it's too late to set the assertion status (that is, if
the named class has already been initialized)?

No action (other than perhaps a warning message) is necessary or desirable if
it's too late to set the assertion status. An exception seems unduly
heavyweight.

4. Why not overload a single method name to take the place of

setDefaultAssertionStatus and setAssertionStatus?

Clarity in method naming is for the greater good. Overloading tends to cause
confusion.

5. Why not tweak the semantics of desiredAssertionStatus to make it more

"programmer friendly" by returning the actual assertion status if a class is
already initialized?

It's not clear that there would be any use for the resulting method. The method

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (20 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

isn't designed for application programmer use, and it seems inadvisable to make
it slower and more complex than necessary.

6. Why is there no RuntimePermission to prevent applets from enabling/disabling

assertions?

While applets have no reason to call any of the ClassLoader methods for
modifying assertion status, allowing them to do so seems harmless. At worst,
an applet can mount a weak denial-of-service attack by enabling assertions in
classes that have yet to be initialized. Moreover, applets can only affect the
assert status of classes that are to be loaded by class loaders that the applets
can access. There already exists a RuntimePermission to prevent untrusted
code from gaining access to class loaders (getClassLoader).

7. Why not provide a construct to query the assert status of the containing class?

Such a construct would encourage people to inline complex assertion code,
which we view as a bad thing. Further, it is straightforward to query the assert
status atop the current API, if you feel you must:

 boolean assertsEnabled = false;
 assert assertsEnabled = true; // Intentional side-effect!!!
 // Now assertsEnabled is set to the correct value

8. Why does an assert statement that executes before its class is initialized
behave as if assertions were enabled in the class?

Few programmers are aware of the fact that a class's constructors and
methods can run prior to its initialization. When this happens, it is quite likely
that the class's invariants have not yet been established, which can cause
serious and subtle bugs. Any assertion that executes in this state is likely to
fail, alerting the programmer to the problem. Thus, it is generally helpful to the
programmer to execute all assertions encountered while in this state.

Java Software

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (21 / 22)2007-12-16 오전 7:24:21

Programming With Assertions

Copyright © 2002 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/j2se/1.4.2/docs/guide/lang/assert.html (22 / 22)2007-12-16 오전 7:24:21

http://java.sun.com/j2se/1.4.2/docs/relnotes/SMICopyright.html
http://www.sun.com/

	Table of Contents
	Before you start
	About this tutorial
	About the SCJP 1.4 exam

	Declarations and access control
	Arrays
	Declaring classes, variables, and methods
	Constructors
	Summary
	Exercise

	Flow control, assertions, and exception handling
	Flow control statements
	Assertions
	Exception handling
	Summary
	Exercise

	Garbage collection
	Behavior of the garbage collector
	Eligibility for garbage collection
	Finalization
	Summary
	Exercise

	Language fundamentals
	Package and class declarations
	Interfaces
	Java keywords and identifiers
	Literals
	Summary
	Exercise

	Operators and assignments
	Using operators
	The equals() method
	Passing variables into methods
	Summary
	Exercise

	Overriding, overloading, and object orientation
	Encapsulation
	Polymorphism
	Summary
	Exercise

	Threads
	Creating threads
	Thread constructors
	Thread states
	Important thread methods
	Thread synchronization
	Summary
	Exercise

	Fundamental classes in the java.lang package
	Using the Math class
	String and StringBuffer
	Wrapper classes
	Summary
	Exercise

	The Collections framework
	Collections and collections interfaces
	Summary
	Exercise

	Summary
	Summary

	Resources
	sun.com
	Programming With Assertions

